Генетика

    Революция в генетике еще только начинается. Выделение и внедрение генов карликовости обеспечило стремительное распространение по всему миру короткостебельных неполегающих сортов злаков, способных накапливать урожай зерна до 100 центнеров с гектара. Именно они послужили основой "зеленой революции". Разработка методов прогнозирования эффекта гетерозиса (резкого повышения продуктивности гибридов первого поколения) позволила получить множество гибридов кукурузы, сорго, риса, подсолнечника, новых видов кур, свиней, тутового шелкопряда, ежегодно дающих миллионы тонн дополнительной продукции. Появился первый, искусственно созданный человеком, вид культурного растения тритикале - амфидиплоид, в клетках которого функционируют хромосомы ржи и пшеницы. С помощью новейших методов генетики, в том числе и химического мутагенеза, созданы сотни новых сортов растений.

     В связи с возникновением новой ветви биологической науки - молекулярной биологии - появились поразительные возможности для изучения механизмов генетических процессов и управления ими. Открытие основного канала передачи наследственной информации путем комплементарного синтеза молекул нуклеиновых кислот и связанных с этим сложных   скоординированных биохимических процессов позволило заглянуть в  процесс эволюции макромолекул, создавший такие совершенные структуры, как хлоропласты, митохондрии, рибосомы, молекулы гемоглобина и ферментов. Вместе с тем в последние годы было показано, что только небольшая часть высших организмов, заключенных в хромосомах, - эукариот (т. е. имеющих ядра) - молекул ДНК кодирует синтез белков, а функциональная роль более 90 % ДНК еще неизвестна.

    Установлено мозаичное строение гена, т. е. чередование последовательности ДНК, кодирующих часть белковой молекулы - экзонов, с нетранслируемыми последовательностями - интронами. Открыты мобильные генетические элементы - последовательности ДНК, которые при смене поколений могут перемещаться по геному, "включая" и "выключая" отдельные гены, в том числе и онкогены, "запускающие механизм" злокачественного перерождения клетки. Роль этих "прыгающих генов" в функционировании хромосомного набора и в эволюции выяснена еще далеко не полностью, и здесь нас могут ожидать интересные открытия.

    Все это стало возможным благодаря разработке целой серии оригинальных методов манипулирования с молекулами нуклеиновых кислот и белков. Были созданы условия не только для расшифровки кода отдельных генов, но и для искусственного синтеза работающих генов. Возникла новая область науки - генетическая инженерия - конструирование рекомбинантных молекул. Сегодня мы можем выделить природный ген или химически синтезировать его, вставить в кольцевую молекулу ДНК - плазмиду и с ее помощью заставить клетки микроорганизмов продуцировать нужные человеку вещества, например, гормон роста, инсулин, интерфероны и т. д.  Современная биотехнология основана на культивировании клеток или одноклеточных организмов рекомбинантными молекулами.